Code Critiquer

App Idea: Code Critiquer is a static analysis tool for finding common anti-patterns in
user-submitted code snippets. Similar to grammar or plagiarism checkers in which users can
submit either their full source code or erroring segments, and have the app respond with
feedback pertaining to the found anti-pattern (bugs, errors, etc.) found within the given code.
Currently, Code Critiquer will be used on Java code with the goal of implementing MatLab
support, if time permits.

App Users:
- Novice Programmers. Users with less experience are more likely to encounter problems
caused by common anti-patterns.
- Language Learners. Users working in unfamiliar languages or environments are more
likely to encounter problems caused by common anti-patterns.
- Programming Tutors. Users trying to clean or optimize their code can benefit from
resolving common anti-patterns or implementing efficient programming patterns.

App Usage: There should be a text box or file submission where code is put into, and there
should also be a button to submit it, then there should be a text box or message displayed on
where the anti pattern is located and give feedback on the code. Will create a guest and login
features allowing users to store their growth over time within the database, if they so desire.

App Data:

- Remote Database. We will remotely store patterns and anti-patterns as strings in our
database, along with the associated critiques. If a user chooses to log in, their code
submission will be stored, along with the critiques detected in that file. We will also store
metadata about user submissions, such as time submitted and critique presence over time.

- App Output. We will create tooltip style critiques appearing over the associated line
number within the provided code on the website..We will also provide output files in .txt,
.pdf, and .java formats. All will contain the found critiques in an appropriate format. (.txt
and .pdf will have the submitted code, with the critiques and associated line numbers
following the code, whilst the .java will insert the critiques as TODO comments above
the line)

App Views: There should be a text box or file submission button, and once the code is critiqued,
it brings you to a critique view showing the critiqued code. There can be a view with the
critiqued code and the past submission of the users code.



List of Implementation and Usability Challenges:

Understanding parsing: The premade parser that will be provided to us may have a
learning curve for the team.

Database Storage: Precisely determining how and where this data is stored will be a
challenge.

Unique Link Authentication: Avoiding full user authentication should be easier but
regardless, unique link authentications come with challenges that need to be considered.
User Progress Tracking: Another challenge is determining how our team will track,
store and display progress of the user.

Critique Display: Designing Ul elements that convey only critical information to the
user is crucial to our project’s usability.



